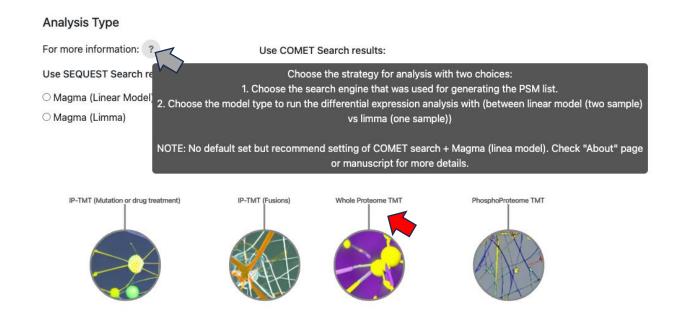
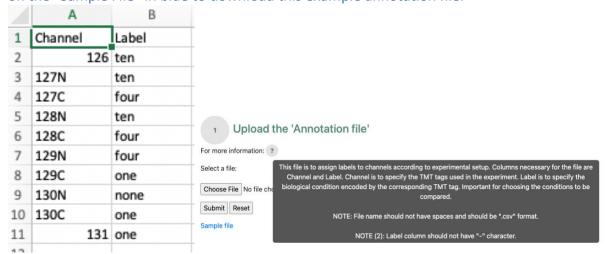
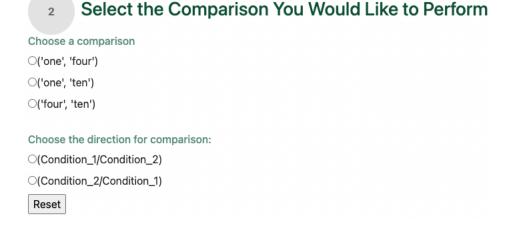
TMT (Whole Proteome)


Step 1: Click on the TMT tab on the home page to access all the TMT workflows (as shown in figure below with the grey arrow).

Step 2: Choose the type of analysis to run. You can hover over the question mark to get more details on the different choices and recommended settings (as shown by the grey arrow below). The choices to be made here include:


- 1. The choice of search engine (SEQUEST in Proteome Discoverer vs COMET)
- 2. The choice of analysis type (MAGMa LM for a two-sample t-test and MAGMa Limma for a one sample t-test)

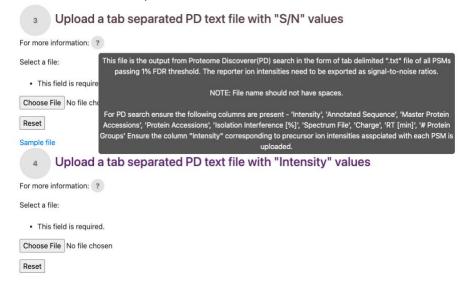
Click on the Whole proteome arm (highlighted with red arrow in the figure below) to access to workflow.



Step 3: Upload the annotation file. This is made using the experimental setup.

An example can be seen below taken from a benchmarking two whole proteome (yeast spiked into human) TMT10 experiment. Here each TMT label is associated with a separate condition. For example, ten implies Human: Yeast of 1:1, four implies Human: Yeast of 1:0.4 and one implied Human: Yeast of 1:0.1. You can also hover over question mark for more details. Click on the "Sample File" in blue to download this example annotation file.

Step 4: Choose the conditions you want to compare in a pairwise fashion. And choose the direction of comparison. So, choosing comparison ('four','ten') and direction (Condition 2/Condition 1) means the following comparison will run – (ten/four).



Step 5: Upload the input files (PSM list) for quantification.

For SEQUEST in Proteome Discoverer search, upload a tab separated file of PSM (filtered at 1% FDR or filter cutoff of choice) and associated reporter ion abundance (per TMT channel). The abundances must be exported as signal-to-noise as well raw reporter intensities. Make sure the

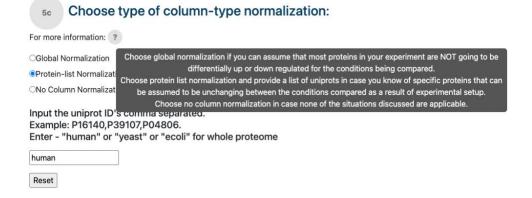
files have the following columns — 'Intensity', 'Annotated Sequence', 'Master Protein Accessions', 'Protein Accessions', 'Isolation Interference [%]', 'Spectrum File', 'Charge', 'RT [min]', '# Protein Groups'.

As before hover over question mark for more information. Click on the "Sample File" in blue to download this example PSM files.

The example has been down sampled to 500 proteins from a real benchmarking whole-proteome experiment and looks like the screenshot below.

Checked	Confidence	Identifying N	PSM Ambigu Sequence	Annotated Si Modification # Proteins	Master Pro	te Protein Acce #	Missed Cle Charge	De	eltaScore	DeltaCn	Rank	Search E	ngin	m/z [Da]	MH+ [Da]	Theo. MH+ [I Delt
FALSE	High	Sequest HT (Unambiguou IINEPTAAAIA	[R].iINEPTA# N-Term(TMT	3 PODMV9	P17066; P0D	0	3	0.7037		0	1	1	639.69289	1917.06411	1917.06429
FALSE	High	Sequest HT (Unambiguou DVTFLNDCV0	[K].dVTFLND N-Term(TMT	1 P00560	P00560	0	3	0.642		0	1	1	807.76363	2421.27633	2421.27358
FALSE	High	Sequest HT (Unambiguou ELMQQIENFI	[K].eLMQQIE N-Term(TMT	1 P04807	P04807	0	3	0.4396		0	1	1	623.00582	1867.0029	1867.00356
FALSE	High	Sequest HT (Unambiguou TGSQGQCTC	[R].tGSQGQi N-Term(TMT	1 P62857	P62857	0	2	0.5774		0	1	1	725.86732	1450.72737	1450.72699
FALSE	High	Sequest HT (Unambiguou NLDFQDVLDI	[R].nLDFQDV N-Term(TM1	1 Q9Y3I0	Q9Y3I0	0	3	0.3244		0	1	1	555.64673	1664.92562	1664.92596
FALSE	High	Sequest HT (Unambiguou DFSYLFSDET	[K].dFSYLFSEN-Term(TMT	1 P53090	P53090	0	3	0.5372		0	1	1	598.62285	1793.85399	1793.85436
FALSE	High	Sequest HT (Unambiguou FTLLPPTSPGI	[R].fTLLPPTS N-Term(TM1	2 Q13724	Q13724-2; Q	0	3	0.4871		0	1	1	667.38721	2000.14706	2000.14685
FALSE	High	Sequest HT (Unambiguou KTSASSASAS	[R].kTSASSA N-Term(TMT	1 Q86VM9	Q86VM9	1	3	0.565		0	1	1	600.32722	1798.9671	1798.96592
FALSE	High	Sequest HT (Unambiguou FDGCYCDSLE	[K].fDGcYcD5 N-Term(TMT	1 P06280	P06280	0	3	0.6649		0	1	1	829.05208	2485.14169	2485.14158
FALSE	High	Sequest HT (Unambiguou QTQIFTTYSD	[K].qTQIFTTY N-Term(TMT	3 PODMV9	PODMV8-2; F	0	3	0.5167		0	1	1	1005.84729	3015.52731	3015.5261
FALSE	High	Sequest HT (Unambiguou AEDNADTLAI	[R].aEDNAD1 N-Term(TM1	1 P12004	P12004	0	3	0.7182		0	1	1	845.11126	2533.31922	2533.31862
FALSE	High	Sequest HT (Unambiguou VLENTEIGDS	[K].vLENTEIG N-Term(TM1	1 P00560	P00560	0	3	0.4925		0	1	1	680.04149	2038.10992	2038.11086
FALSE	High	Sequest HT (Unambiguou ESGDFLAIDLE	[K].eSGDFLA N-Term(TM1	1 P04807	P04807	0	2	0.6717		0	1	1	954.00715	1907.00702	1907.00717
FALSE	High	Sequest HT (Unambiguou GTNVLMADO	[K].gTNVLM/N-Term(TMT	1 P17255	P17255	0	3	0.4637		0	1	1	941.15431	2821.44837	2821.4476
FALSE	High	Sequest HT (Unambiguou SGVAVADES	[R].sGVAVAI N-Term(TMT	1 Q03048	Q03048	0	3	0.5804		0	1	1	732.40384	2195.19696	2195.19598
FALSE	High	Sequest HT (Unambiguou GGYFDEFGII	[R].gGYFDEF N-Term(TMT	3 P11413	P11413; P114	0	2	0.5077		0	1	1	751.89583	1502.78439	1502.7841
FALSE	High	Sequest HT (Unambiguou TSYAQHQQV	[K].tSYAQHQ N-Term(TMT	1 P61247	P61247	0	3	0.5152		0	1	1	482.9266	1446.76524	1446.76509
FALSE	High	Sequest HT (Unambiguou WVVIGDENF	[K].wVVIGDEN-Term(TMT	1 P19414	P19414	0	3	0.6983		0	1	1	627.64985	1880.93498	1880.93401
FALSE	High	Sequest HT (Unambiguou KTSYAQHQQ	[R].kTSYAQH N-Term(TMT	1 P61247	P61247	1	4	0.5556		0	1	1	451.76112	1804.02264	1804.02299
FALSE	High	Sequest HT (Unambiguou LYVTYFEGDE	[R].IYVTYFEC N-Term(TMT	2 P40825	P40825; P401	0	3	0.5566		0	1	1	607.99409	1821.96771	1821.96749
FALSE	High	Sequest HT (Unambiguou TLSSVQNEVO	[K].tLSSVQN N-Term(TMT	1 P12270	P12270	0	3	0.2779		0	1	1	644.35089	1931.03811	1931.03953
FALSE	High	Sequest HT (Unambiguou CPLGNPANYI	[R].cPLGNPA N-Term(TMT	1 P38219	P38219	0	3	0.6788		0	1	1	821.07264	2461.20338	2461.20193
FALSE	High	Sequest HT (Unambiguou AIEEGIPAFTO	[K].aIEEGIPA N-Term(TMT	2 Q9Y2L1	Q9Y2L1; Q9Y	0	3	0.5507		0	1	1	772.0723	2314.20234	2314.20411
FALSE	High	Sequest HT (Unambiguou GHGFEGVTH	[K].gHGFEG\ N-Term(TMT	1 P14126	P14126	0	3	0.6348		0	1	1	442.56858	1325.69118	1325.6912
FALSE	High	Sequest HT (Unambiguou FTFPII VFFK	(K1.eTFPII VF N-Term(TMT	1 P41940	P41940	0	3	0.4281		0	1	1	554.99527	1662.97125	1662.97185

For COMET search after Peptide-Prophet and Libra, upload a tab separated file of PSM (filtered at 0.9 probability or the probability associated with FDR cutoff choice) and associated reporter ion abundance (per TMT channel). Make sure the files have the following columns — "spectrum", "precursor_intensity", "peptide", "assumed_charge", "retention_time_sec". The second screenshot is of the down-sampled version of COMET search for the same benchmarking dataset.


As before hover over question mark for more information. Click on the "Sample File" in blue to download this example PSM files.

Upload a tab separated COMET search output text file after libra quantification

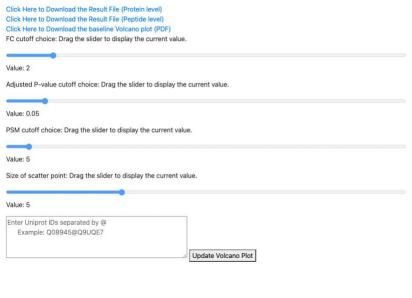
For more information: ? Select a COMET output file: · This field is required. Choose File No file chosen Reset Sample file calc_neutral_libra1 1013.5205 265 libra9 1219.511 27355.422 peptide protein R.n[230.17] csp | Q15056 libra4 1779.85 start_scan 5572 2658.578 46913.817 1996.662 2.25 15/16 1205.419 25729.469 1268.423 919.248 1262.328 0.00148 29/32 43323.339 40178.805 1 R_TMT_who R.n[230.17] + sp | Q14103 | 1198.6257 39150.931 38213.792 29825.273 32722.026 1351 1 R_TMT_who
0.9997 R_TMT_who
1 R_TMT_who
0.9979 R_TMT_who
0.9975 R_TMT_who
0.9962 R_TMT_who 0.235 23/28 R.n[230.17] | sp| Q9UBV2 1195.6261 16022.308 13417.121 14385.506 12223.949 12416.482 15747.328 15723.023 19622.387 15091.739 3355.161 6336.316 54943.984 A.n[230.17]C sp[P34897] (
K.n[230.17]C sp[P16861] F
K.n[230.17]H sp[P02293] F
R.n[230.17]A sp[Q9Y6D9] 2166.382 57086.023 52914.859 1541.334 45440.74 54193.044 1425.058 14036.377 18290.995 2044.142 19946.75 54073.757 2.91E-08 34/56 1612 1633 1731 1749 1869 21211.305 7491 7532 9028.243 1.84 ##### 891.4977 7120.072 5871.214 3900.529 8271.583 7041.006 6153.501 1 R TMT who 0.000223 16/16 R.n[230.17] csp| P16861| F 1111.5937 11747.896 6320.618 4541.432 6872.677 2197.08 4013.847 923.721 1111.5937 1262.6985 1135.5672 1312.7141 1323.6469 1375.7461 0.9247 R TMT who 0.599 21/24 0.0593 14/16 K.n[230.17]K sp | P49368 | 80456.755 77832.259 57609.413 76163.861 69252.131 88779.839 100258.097 86785.331 82815.5 2000 2068 2094 2099 2211 0.9979 R_TMT_who 0.9979 R_TMT_who 0.9993 R_TMT_who 0.9718 R_TMT_who R.n[230.17]E sp| Q06505| R.n[230.17]E sp| Q06505| R.n[230.17]E sp| O75475| K.n[230.17]E sp| P36542|/ R.n[230.17]R sp| Q13813| 2193.952 18077.969 2684.161 717.692 16408.627 17272.188 20223.603 1 R_TMT_who 0.9999 R_TMT_who 1.75E-05 19/20 N.n[230.17] / sp | P34897 | 0 1374.7054 1251.386 1301.89 2129.427 2281.447 1635.196 2395.034 2541.981 3100.044 2358.115 2220 0.00138 26/28 R.n[230.17] A sp | P80967 | 7 1427.7774 260291.359 243746.559 85600.452 221962.015 70889.797 101361.155 17022.976 18955.91 14850.995 2262 0.00138 26/28 0.00101 30/36 0.216 14/14 0.0347 29/56 0.00706 18/18 K.n[230.17]A sp| Q16831| R.n[230.17]N sp| P38205| f R.n[230.17]N sp| Q92804| 1412.667 1073.5668 2090.9061 2269 2418 2458 2555 6710.196 5477.483 6385.944 5782.308 4439.501 7712.871 6087.428 13238.392 2980.106 7220.386 19555.599 4627.007 8147.471 1170.5468 5500.215 6692.612 R.n[230.17]S sp | Q92804 | 9934.274 9003.918 0.9837 R_TMT_who 4.69 ##### # K.n[272.18]S sp|P17098|Z 1076.6232 16237.864 15545.34 11487.484 14731.979 14259.547 18282.277 19268.547 13486.848 14597.368 2603 0.9987 R TMT who 0.093 16/16 R.n[230.17]S sp| Q92804| K.n[230.17]G sp| P52893| 1053.5042 81971.488 38077.627 69587.085 71880.857 8985.562 42830.101 84792.734 2626 9411 1177.5713 5774.009 5413.42 1644.857 5795.336 2354.862 3782.601 960.5191 232090.812 239461.235 40403.982 237075.329 76958.565 947.5239 702013.799 715121.712 173012.595 657745.062 232622.736 ### K.n[230.17]D sp|P23254|1

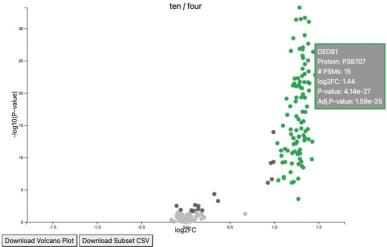
Step 6: You can modify settings (using fractions, doing row normalization and type of column normalization) for your specific analysis. Recommendation is to use the default settings. Hover over question mark for more information.

For the example dataset choose "Protein-list Normalization" for type of column type normalization. Put "Human" in the text box.

Step 8: Choose whether to do imputation on your data or not. Recommendation is to not to not introduce biases.

A successful start of run with look like this -


Run the Analysis


Your job has been succesfully submitted, you will be redirected to the result page once the analysis is complete

The output page (given a successful run) looks like the screenshots below. You can download the protein level and peptide level differential expression analysis results as well as the pdf of resulting volcano plot (set at 5 PSM cutoff). You can highlight specific proteins on the volcano plot by entering the associated Uniprot IDs. You can dynamically set the thresholds and download the resulting file, as well as subset the result file with user-defined thresholds. —

Success!

The output file (protein) looks like this -

	A	В	C	D	E	F	G	Н	1	J	K	L	M	N
	Protein	log2FC	pval	adjpval	Proteinnoiso	Gene Symbo	# PSMs	log2_127C	log2_129N	log2_128N	log2_127N	log2_128C	log2_126	PSM Cutoff
	P26784	1.38134962	2.23E-22	4.11E-21	P26784	RPL16A	12	-11.726424	-11.768642	-10.474821	-10.422956	-11.861789	-10.440364	
}	Q96F63	0.34030288	0.06213941	0.10918158	Q96F63	CCDC97	2	-11.408906	-11.50002	-11.205176	-11.038491	-11.745837	-10.928838	
ļ	P06280	-0.0384584	0.90470072	0.91944126	P06280	GLA	5	-11.667265	-11.250148	-11.502813	-11.65461	-11.614298	-11.353603	
5	Q3E792	1.21820791	9.91E-14	7.75E-13	Q3E792	RPS25A	5	-11.50257	-11.801045	-10.503787	-10.442304	-11.89155	-10.44524	
5	Q12207	1.35761863	0.02973173	0.05577494	Q12207	NCE102	2	-12.775087	-12.264278	-11.417469	-10.79947	-11.709065	-10.554678	
7	043747	0.01812818	0.45050281	0.57056066	043747	AP1G1	5	-11.197248	-11.623892	-11.539199	-11.481668	-11.659592	-11.425964	
3	Q05506	1.28455969	5.85E-34	2.92E-31	Q05506	YDR341C	28	-11.761494	-11.793693	-10.552705	-10.48513	-11.818836	-10.499439	
)	P13861	0.02960514	0.48693274	0.60292664	P13861	PRKAR2A	15	-11.474795	-11.56569	-11.449339	-11.573047	-11.477439	-11.490748	
0	P53090	1.29083586	2.38E-11	1.47E-10	P53090	ARO8	8	-11.587725	-11.835221	-10.628664	-10.525632	-11.852603	-10.486275	
1	P46109	0.02998512	0.12793197	0.2033059	P46109	CRKL	8	-11.602967	-11.429439	-11.372418	-11.478999	-11.412675	-11.362643	
2	PODMV9	-0.0457134	0.91229316	0.92339612	P0DMV9	HSPA1B	76	-11.520141	-11.519697	-11.498504	-11.506837	-11.440221	-11.558125	
3	076095	-0.1619452	0.30064374	0.41214623	O76095	JTB	1	-11.518074	-11.376478	-11.68002	-11.377997	-11.396209	-11.588197	
1	Q9BUJ2	-0.1597208	0.47721427	0.5953248	Q9BUJ2	HNRNPUL1	6	-11.439283	-11.49517	-11.732362	-11.656188	-11.525864	-11.626989	
5	Q8TEQ6	0.31017975	0.23309433	0.34009963	Q8TEQ6	GEMIN5	2	-11.382307	-11.885992	-11.050817	-11.340174	-11.586252	-11.575813	
ŝ	P36018	0.90554353	6.35E-07	2.60E-06	P36018	YPT52	4	-11.648322	-11.606236	-10.749002	-10.723762	-11.868766	-10.721091	
7	P38791	0.99104217	1.16E-14	1.02E-13	P38791	DYS1	13	-11.632256	-11.647798	-10.60166	-10.764521	-11.772198	-10.84641	
3	Q9UNH5	0.09600367	0.35627739	0.4715714	Q9UNH5	CDC14A	1	-11.497843			-11.399855	-11.381747	-11.287731	
9	P45973	0.06565392	0.6568898	0.74666973	P45973	CBX5	3	-11.580473	-11.565569	-11.490778	-11.477054	-11.478546	-11.498655	
0	Q02878	0.00560888	0.68024662	0.76279341	Q02878	RPL6	17	-11.570794	-11.506728	-11.481798	-11.490027	-11.482545	-11.550941	
L	Q969Q5	-0.012839	0.81862909	0.86362772	Q969Q5	RAB24	1	-11.398085	-11.588733	-11.53585	-11.410924	-11.465611	-11.558748	
2	P13674	-0.1468863	0.58969541	0.68912883	P13674	P4HA1	1	-11.296898	-11.362917	-11.510518	-11.443784	-11.710561	-11.670512	
3	P40926	-0.0105211	0.53037069	0.63926322	P40926	MDH2	22	-11.395903	-11.465077	-11.494215	-11.462558	-11.498413	-11.482076	
4	Q16204	-0.0936251	0.47355475	0.59224016	Q16204	CCDC6	2	-11.269886	-11.574696	-11.510263	-11.732625	-11.432712	-11.363511	
5	Q12287	1.32409542	0.00204293	0.00476366	Q12287	COX17	1	-11.375748	-11.838521	-10.514425	-10.407758	-11.901406	-10.541281	
5	P15703	1.16134159	8.73E-12	5.75E-11	P15703	BGL2	4	-11.648393	-11.712628	-10.556376	-10.590355	-11.843102	-10.50546	
7	Q8IY81	0.3241989	4.75E-05	0.00015283	Q8IY81	FTSJ3	6	-11.666386	-11.626663	-11.280481	-11.185315	-11.59718	-11.421914	
3	P38986	1.38802544	3.15E-05	0.00010708	P38986	ASP1	1	-11.866326	-11.752365	-10.547192	-10.46865	-11.873223	-10.36434	
)	P35178	0.80046002	0.00029336	0.00082704	P35178	RRP1	1	-11.547308	-11.632503	-10.829477	-10.92925	-11.687103	-10.746848	
4	□	ten-vs-four	FC and pv	al YuLab	+									

The output file (peptide) looks like this -

	Α -	В	С	D	E	F	G	Н		J	K	L	M	N
1	PeakID	AnnotatedSe	Charge	Fraction	Protein	126	127C	127N	128C	128N	129C	129N	130C	131
2	[K].lkGDDLQ	[K].lkGDDLQ/	3	HPH7.raw	P07910	0.00033327	0.0003802	0.00033692	0.00032673	0.00034862	0.00036727	0.00033562	0.00038573	0.00033549
3	[K].dNQIYAIE	[K].dNQIYAIE	3	HPH5.raw	P38879	0.00074752	0.00026469	0.00075403	0.00024236	0.00075802	5.00E-05	0.00027379	3.55E-05	4.08E-05
4	[R].dSGYGVS	[R].dSGYGVS	2	HPH2.raw	P13663	0.00070923	0.00030735	0.00066538	0.00022826	0.0006035	0.00010463	0.00032957	0.00010376	0.00010806
5	[K].vEEQEQC	[K].vEEQEQC	3	HPH3.raw	P38701	0.00071763	0.00026167	0.00068688	0.00026264	0.00070311	7.07E-05	0.00031346	9.23E-05	4.98E-05
6	[K].IYDLLGVS	[K].IYDLLGVS	3	HPH5.raw	P25294	0.00048221	0.00018885	0.00053643	0.00014272	0.00054058		0.00022006		
7	[R].eAGEVkD	[R].eAGEVk[3	HPH3.raw	P41805	0.00067574	0.00032078	0.00072417	0.00025971	0.00070877	4.73E-05	0.00032821	6.05E-05	4.64E-05
8	[R].gkLEEEYA	[R].gkLEEEYA	3	HPH3.raw	P32589	0.00074303	0.00037201	0.0006442	0.0002381	0.00067626	5.02E-05	0.00032111	8.03E-05	5.33E-05
9	[K].aGAHLQ0	[K].aGAHLQ0	3	HPH7.raw	P04406	0.00032877	0.00041784	0.00034462	0.00035303	0.00034255	0.0003306	0.00035312	0.00037582	0.00031547
10	[R].gFLSDLPI	[R].gFLSDLP(3	HPH6.raw	P05317	0.00069354	0.00037472	0.00071906	0.00025598	0.00069285	5.74E-05	0.00028641	5.68E-05	4.88E-05
11	[R].ILNTFLER	[R].ILNTFLER	2	HPH8.raw	Q14204	0.00033171	0.00032232	0.00034876	0.00035939	0.0003956	0.00041236	0.00036113	0.00029225	0.00029544
12	[R].gGYFDEF	[R].gGYFDEF	2	HPH5.raw	P11413	0.00028778	0.00044996	0.00036879	0.00027447	0.00034816	0.00037051	0.00033086	0.00040549	0.00032448
13	[R].gWDDLFI	[R].gWDDLFI	2	HPH7.raw	Q14204	0.00035529	0.00041456	0.0003319	0.00031538	0.00033567	0.00033693	0.00033518	0.00041115	0.00032618
14	[R].dNQLSEV	[R].dNQLSEV	2	HPH3.raw	Q14978	0.00034719	0.00029993	0.00036285	0.00038731	0.00035562	0.00036434	0.00036569	0.00031091	0.00033842
15	[K].hLEDNTLI	[K].hLEDNTLI	3	HPH6.raw	P05739	0.00073257	0.00024626	0.00075546	0.0002609	0.00072149	4.87E-05	0.0003024	4.62E-05	4.75E-05
16	[K].tLDVVER.	[K].tLDVVER.	2	HPH3.raw	P00942	0.00071685	0.00025749	0.00072301	0.00027892	0.00076609	6.17E-05	0.00029212	2.97E-05	3.49E-05
17	[R].eLDLYDN	[R].eLDLYDN	3	HPH3.raw	Q15435	0.00033634	0.00042543	0.00037834	0.00030226	0.00041087	0.00029255	0.00037885	0.00037224	0.00026275
18	[R].aEVSQPR	[R].aEVSQPR	2	HPH7.raw	P22314	0.00022849	0.00041725	0.00023279	0.00053172	0.00025502	0.00040786	0.00029357	0.00038406	0.00042454
19	[-].mGSGAG	[-].mGSGAG	2	HPH1.raw	Q9Y5G0	0.00038931	0.000332	0.00061138	0.00032747	0.00052097	0.00022755	0.00029517	0.00028301	0.00017976
20	[K].iEGVATP	[K].iEGVATP	3	HPH6.raw	P41056	0.00069567	0.00027261	0.00069091	0.00027398	0.00072077	7.28E-05	0.0003124	5.97E-05	6.19E-05
21	[K].tHIGDGF	[K].tHIGDGF	3	HPH8.raw	Q12074	0.00071313	0.00019546	0.00077785	0.00028266	0.00073519	6.00E-05	0.00029518	3.66E-05	5.77E-05
22	[K].sVDELITE	[K].sVDELITE	3	HPH2.raw	P05319	0.00075717	0.00032846	0.0007171	0.0002409	0.00070871	5.14E-05	0.0002749	4.88E-05	5.09E-05
23	[K].INTAISNL	[K].INTAISNL	2	HPH5.raw	P07806	0.00038151	0.00031786	0.00046773	0.00036292	0.00041521		0.0002059		
24	[K].aTGDETG	[K].aTGDETG	2	HPH2.raw	P61247	0.00033086	0.00039852	0.00031653	0.00032255	0.00031704	0.00035513	0.00032157	0.00044364	0.00035643
25	[R].iHVLEAQ	[R].iHVLEAQ	3	HPH6.raw	Q9BSJ8	0.0003478	0.00034907	0.00032907	0.00036826	0.00035332	0.00035113	0.00034791	0.00034868	0.00035292
26	[K].eIHFFGDI	[K].eIHFFGDI	3	HPH5.raw	P07283	0.00069107	0.00037161	0.00071913	0.00024916	0.00067682	5.42E-05	0.0003102	5.96E-05	4.97E-05
27	[R].kQFDAAE	[R].kQFDAAE	3	HPH5.raw	P07263	0.0006758	0.00034609	0.00072885	0.0002552	0.00069311	6.18E-05	0.00030948	5.28E-05	5.30E-05
28	[R].dMYEQF	[R].dMYEQF	3	HPH6.raw	P61011	0.00048423	0.00029595	0.00040941	0.00028214	0.00044429	0.00023958	0.00038542	0.000303	0.00030104
29	[K].qLQNISL4	[K].qLQNISL/	3	HPH8.raw	Q14204	0.00056728	0.00040193	0.00025426	0.00025606	0.00040678	0.00029987	0.00036162	0.00030783	0.00029106
4	(en-vs-four_	peptide_le	vel_FC_an	+									